Indian Statistical Institute, Bangalore Centre

B.Math (Hons.) III Year, First Semester Mid-Sem Examination - 2013-2014 Complex Analysis September 06, 2013 Instruct

Instructor: Bhaskar Bagchi

Time: 3 Hours

Maximum Marks : 100. Direction : Answer any five of the following six Questions.

1. (a) Let $f: X \to \mathbb{C}^*$ be the identity function. If $X = S^1$ then show that f has no continuous branch of its argument. If $X \subset S^1$ then show that it has a continuous branch of its argument.

(b) Define $Ind(\gamma, z)$ for any closed path γ in \mathbb{C} and $z \in \mathbb{C} \setminus tr(\gamma)$. If γ is piecewise smooth then derive the integral formula for this index. (You may assume the Path Lifting Lemma without proof.)

(10+10=20)

2. (a) Let $f : \mathbb{C} \to \mathbb{C}$ be defined by $f(x+iy) = \sum_{j, k=0}^{n} a_{jk} x^{j} y^{k}$, where a_{jk} are complex constants and $x, y \in \mathbb{R}$. If f is holomorphic then show that $f(z) = \sum_{j=0}^{n} a_{j0} z^{j}$ for all $z \in \mathbb{C}$.

(b) Let f be an entire function which maps \mathbb{R} into \mathbb{R} . Then show that $f(\overline{z}) = \overline{f(z)}$ for all $z \in \mathbb{C}$.

$$(10+10=20)$$

3. (a) State and prove Guvsat's Lemma.

(b) When is a planar domain called simply connected? If Ω is a planar domain such that $\int f = 0$ for every closed path γ in Ω and every holomorphic function f defined on Ω then show that Ω must be simply connected.

(15+5=20)

4. (a) Prove that the sine function (originally defined on the real line) can be extended to an entire function.

(b) Prove that this entire function maps the domain $\{z = x + iy : 0 < x < 2\pi, y > 0\}$ bijectively onto the complement in \mathbb{C} of $[-1, 1] \bigcup [0, i \infty)$.

(5+15=20)

5. Let $\{f_n : n \ge 1\}$ and f be complex valued continuous functions on a domain Ω , such that $f_n \to f$ locally uniformly on Ω . If each f_n is holomorphic, then show that (a) f is holomorphic,

(b)
$$f'_n \to f'$$
 locally uniformly on Ω .

(5+15=20)

6. Let f be a holomorphic function on a planar domain Ω . Suppose f is not the identically zero function. Then show that

(a) The zero-set of f is discrete in $\Omega.$

(b) Give an example of such a function f (on some planar domain Ω) such that the zero-set of f has a limit point in the boundary of Ω .

(12 + 8 = 20)